If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ then
$x < 0$
$0 < x < 2$
$2 < x < 4$
$3 < x < 4$
Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is
Let $N$ be the set of positive integers. For all $n \in N$, let $f_n=(n+1)^{1 / 3}-n^{1 / 3} \text { and }$ $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ Then,
Set of all values of $x$ satisfying
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$
Range of the function , $f (x) = cot ^{-1}$ $\left( {{{\log }_{4/5}}\,\,(5\,{x^2}\,\, - \,\,8\,x\,\, + \,\,4)\,} \right)$ is :