If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ then 

  • A

    $x < 0$

  • B

    $0 < x < 2$

  • C

    $2 < x < 4$

  • D

    $3 < x < 4$

Similar Questions

The domain of the function $f(x) =\frac{{\,\cot^{-1} \,x}}{{\sqrt {{x^2}\,\, - \,\,\left[ {{x^2}} \right]} }}$ , where $[x]$ denotes the greatest integer not greater than $x$, is :

The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-

Suppose $\quad f : R \rightarrow(0, \infty)$ be a differentiable function such that $5 f ( x + y )= f ( x ) \cdot f ( y ), \forall x , y \in R$. If $f(3)=320$, then $\sum \limits_{n=0}^5 f(n)$ is equal to :

  • [JEE MAIN 2023]

The value of $b$ and $c$ for which the identity $f(x + 1) - f(x) = 8x + 3$ is satisfied, where $f(x) = b{x^2} + cx + d$, are

Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$  $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.